If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-120x+3480=0
a = 1; b = -120; c = +3480;
Δ = b2-4ac
Δ = -1202-4·1·3480
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-4\sqrt{30}}{2*1}=\frac{120-4\sqrt{30}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+4\sqrt{30}}{2*1}=\frac{120+4\sqrt{30}}{2} $
| 7(3y+2)=23 | | x(x+6)/(2x+6)=40/3 | | 412=12s+28 | | 7(3y-2)=23 | | -1876=6(17n-6)+5 | | 6(1y-4)=36 | | 2(5x+4)=-5(4x-5) | | 4(8y+56)=96 | | 24n/24=-13/24 | | 24n=-13 | | t^2+2t-78=0 | | 10x+2=-15x+9-2x | | 2y+24=8y | | 2x-5/3=3x-10 | | 2.50m+4=21.50 | | b+27-19=12 | | 4(8y+56)=98 | | 3(8x+16)=120 | | 4(5y+25)=40 | | 4(5y+10)=80 | | 3(7y+35)=42 | | 3(6p^2+7p-5)=0 | | 20-8n=15n= | | 2(3y+6)=30 | | n+4=19-2n= | | 4(7y+35)=56 | | 13k-32=8k+8 | | 2/3x+x=20 | | 2a-14-3a=5 | | 6m^+23m+15=0 | | -4t+-36+6t=3t | | (2c-1)^2=25 |